OpenCL ist eine Kurzform für „Open Computing Language“. Es ist eine Programmiersprache, die auf verschiedenen Plattformen verwendet werden kann, hauptsächlich für beschleunigtes Rechnen. Aufgrund ihrer vielfältigen Anwendbarkeit auf mehreren Plattformen wird sie am häufigsten als plattformübergreifende Computersprache bezeichnet. Sie können Programme auf OpenCL schreiben und auf einer Vielzahl von Geräten ausführen, darunter CPUs, GPUs, FPGAs und vieles mehr.
In diesem Handbuch werde ich mich allein auf GPUs konzentrieren. Ich habe sowohl mit NVIDIA- als auch mit AMD-GPUs gearbeitet und werde Ihnen zeigen, wie Sie sie mit OpenCL auf einfachste Weise zum Laufen bringen können.
Obwohl ich Ubuntu für das Hostsystem verwendet habe, ist der Docker-Teil auf alle anderen Linux-Distributionen anwendbar.
Voraussetzungen
- NVIDIA/AMD-Grafikkarte
- Ubuntu Linux 20.04.2 LTS Desktop/Server 64-Bit
- Docker (für anwendungsspezifische Verwendung)
Kommen wir gleich zu den Details!
Einrichten von OpenCL für NVIDIA-GPUs
Ich zeige Ihnen zunächst, wie Sie sicherstellen, dass OpenCL auf Ihrem Haupt-Ubuntu-Desktop/Server funktioniert. Sobald dies erledigt ist, zeige ich Ihnen, wie Sie Docker-Container für den gleichen Zweck mit der NVIDIA-GPU ausführen.
OpenCL auf dem Hostsystem ausführen
Auf einem neuen Ubuntu-System müssen Sie zuerst den proprietären NVIDIA-Treiber und CUDA installieren. Letzteres stellt sicher, dass Sie das damit gebündelte OpenCL-Framework erhalten. Installieren Sie schließlich clinfo
Programm, um sicherzustellen, dass OpenCL richtig installiert ist, und zeigt Ihnen die OpenCL-Spezifikationen Ihrer NVIDIA-GPU im Detail. Mal sehen wie:
Überprüfen Sie den empfohlenen Treiber
Verwenden Sie die ubuntu-drivers devices
Befehl zum Abrufen des Namens Ihres empfohlenen Treibers:
[email protected]:~$ ubuntu-drivers devices
== /sys/devices/pci0000:00/0000:00:01.0/0000:01:00.0 ==
modalias : pci:v000010DEd00001C8Csv00001025sd00001265bc03sc00i00
vendor : NVIDIA Corporation
model : GP107M [GeForce GTX 1050 Ti Mobile]
driver : nvidia-driver-460 - distro non-free recommended
driver : nvidia-driver-418-server - distro non-free
driver : nvidia-driver-390 - distro non-free
driver : nvidia-driver-450-server - distro non-free
driver : nvidia-driver-465 - distro non-free
driver : nvidia-driver-460-server - distro non-free
driver : xserver-xorg-video-nouveau - distro free builtin
Beachten Sie oben, dass der empfohlene Treiber nvidia-driver-460
ist .
Installieren Sie alle erforderlichen Pakete
Lassen Sie uns also den empfohlenen Treiber zusammen mit CUDA und clinfo
installieren zuvor in diesem Abschnitt erwähntes Paket:
sudo apt install nvidia-driver-460 nvidia-cuda-toolkit clinfo
Nachdem alle oben genannten drei Pakete installiert sind, starten Sie Ihren Ubuntu-Desktop/Server neu.
Überprüfen Sie Ihre OpenCL-Konfiguration
[email protected]:~$ clinfo
Number of platforms 1
Platform Name NVIDIA CUDA
Platform Vendor NVIDIA Corporation
Platform Version OpenCL 1.2 CUDA 9.1.84
Platform Profile FULL_PROFILE
Platform Extensions cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics cl_khr_local_int32_base_atomics cl_khr_local_int32_extended_atomics cl_khr_fp64 cl_khr_byte_addressable_store cl_khr_icd cl_khr_gl_sharing cl_nv_compiler_options cl_nv_device_attribute_query cl_nv_pragma_unroll cl_nv_copy_opts cl_nv_create_buffer
Platform Extensions function suffix NV
Platform Name NVIDIA CUDA
Number of devices 1
Device Name GeForce GTX 1050 Ti
Device Vendor NVIDIA Corporation
Device Vendor ID 0x10de
Device Version OpenCL 1.2 CUDA
Driver Version 390.143
Device OpenCL C Version OpenCL C 1.2
Device Type GPU
Device Topology (NV) PCI-E, 01:00.0
Device Profile FULL_PROFILE
Device Available Yes
Compiler Available Yes
Linker Available Yes
Max compute units 6
Max clock frequency 1620MHz
Compute Capability (NV) 6.1
Device Partition (core)
Max number of sub-devices 1
Supported partition types None
Max work item dimensions 3
Max work item sizes 1024x1024x64
Max work group size 1024
Preferred work group size multiple 32
Warp size (NV) 32
Preferred / native vector sizes
char 1 / 1
short 1 / 1
int 1 / 1
long 1 / 1
half 0 / 0 (n/a)
float 1 / 1
double 1 / 1 (cl_khr_fp64)
Half-precision Floating-point support (n/a)
Single-precision Floating-point support (core)
Denormals Yes
Infinity and NANs Yes
Round to nearest Yes
Round to zero Yes
Round to infinity Yes
IEEE754-2008 fused multiply-add Yes
Support is emulated in software No
Correctly-rounded divide and sqrt operations Yes
Double-precision Floating-point support (cl_khr_fp64)
Denormals Yes
Infinity and NANs Yes
Round to nearest Yes
Round to zero Yes
Round to infinity Yes
IEEE754-2008 fused multiply-add Yes
Support is emulated in software No
Address bits 64, Little-Endian
Global memory size 4236312576 (3.945GiB)
Error Correction support No
Max memory allocation 1059078144 (1010MiB)
Unified memory for Host and Device No
Integrated memory (NV) No
Minimum alignment for any data type 128 bytes
Alignment of base address 4096 bits (512 bytes)
Global Memory cache type Read/Write
Global Memory cache size 98304 (96KiB)
Global Memory cache line size 128 bytes
Image support Yes
Max number of samplers per kernel 32
Max size for 1D images from buffer 134217728 pixels
Max 1D or 2D image array size 2048 images
Max 2D image size 16384x32768 pixels
Max 3D image size 16384x16384x16384 pixels
Max number of read image args 256
Max number of write image args 16
Local memory type Local
Local memory size 49152 (48KiB)
Registers per block (NV) 65536
Max number of constant args 9
Max constant buffer size 65536 (64KiB)
Max size of kernel argument 4352 (4.25KiB)
Queue properties
Out-of-order execution Yes
Profiling Yes
Prefer user sync for interop No
Profiling timer resolution 1000ns
Execution capabilities
Run OpenCL kernels Yes
Run native kernels No
Kernel execution timeout (NV) Yes
Concurrent copy and kernel execution (NV) Yes
Number of async copy engines 2
printf() buffer size 1048576 (1024KiB)
Built-in kernels
Device Extensions cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics cl_khr_local_int32_base_atomics cl_khr_local_int32_extended_atomics cl_khr_fp64 cl_khr_byte_addressable_store cl_khr_icd cl_khr_gl_sharing cl_nv_compiler_options cl_nv_device_attribute_query cl_nv_pragma_unroll cl_nv_copy_opts cl_nv_create_buffer
NULL platform behavior
clGetPlatformInfo(NULL, CL_PLATFORM_NAME, ...) NVIDIA CUDA
clGetDeviceIDs(NULL, CL_DEVICE_TYPE_ALL, ...) Success [NV]
clCreateContext(NULL, ...) [default] Success [NV]
clCreateContextFromType(NULL, CL_DEVICE_TYPE_DEFAULT) No platform
clCreateContextFromType(NULL, CL_DEVICE_TYPE_CPU) No devices found in platform
clCreateContextFromType(NULL, CL_DEVICE_TYPE_GPU) No platform
clCreateContextFromType(NULL, CL_DEVICE_TYPE_ACCELERATOR) No devices found in platform
clCreateContextFromType(NULL, CL_DEVICE_TYPE_CUSTOM) Invalid device type for platform
clCreateContextFromType(NULL, CL_DEVICE_TYPE_ALL) No platform
ICD loader properties
ICD loader Name OpenCL ICD Loader
ICD loader Vendor OCL Icd free software
ICD loader Version 2.2.11
ICD loader Profile OpenCL 2.1
Beachten Sie, dass hier nur der Plattformname „NVIDIA CUDA“ lautet. Aber CUDA und OpenCL unterscheiden sich voneinander.
Das ist es! Jetzt können Sie OpenCL-Anwendungen mit Ihrer NVIDIA-GPU auf Ihrem Hostsystem ausführen!
OpenCL auf Docker für NVIDIA-GPUs
Nachdem Sie OpenCL nun auf Ihrem Bare-Metal-System eingerichtet und ausgeführt haben, schauen wir uns an, wie Sie es auf einem Docker-Container installieren können!
Installieren Sie die NVIDIA Container Runtime
Hier muss zusätzlich die nvidia-container-runtime
installiert werden Paket.
Um es installieren zu können, müssen Sie zuerst die Repository-Details hinzufügen. Stellen Sie sicher, dass Sie Curl installiert haben, falls Sie es noch nicht auf Ihrem System installiert haben.
sudo apt install curl
curl -s -L https://nvidia.github.io/nvidia-container-runtime/gpgkey | \
sudo apt-key add -
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-container-runtime/$distribution/nvidia-container-runtime.list | \
sudo tee /etc/apt/sources.list.d/nvidia-container-runtime.list
sudo apt update
sudo apt install nvidia-container-runtime
Erstellen des Dockerfiles
Es ist notwendig, dass Sie alles, was Sie auf dem Hostsystem gemacht haben, auf einem frischen neuen Image replizieren, damit Sie es verwenden können, um unsere benutzerdefinierten OpenCL-Anwendungen auf einem Container zu starten (wird später näher erläutert).
Erstellen Sie ein neues Verzeichnis für Ihr NVIDIA-GPU-OpenCL-Projekt und verschieben Sie es hinein:
mkdir nvidia-opencl
cd nvidia-opencl
Verwenden Sie Ihren bevorzugten Texteditor (Vim/Nano oder einen anderen), um die folgende Docker-Datei zu erstellen und zu speichern:
FROM ubuntu:20.04
ARG DEBIAN_FRONTEND=noninteractive
RUN apt-get update && apt-get -y upgrade \
&& apt-get install -y \
apt-utils \
unzip \
tar \
curl \
xz-utils \
ocl-icd-libopencl1 \
opencl-headers \
clinfo \
;
RUN mkdir -p /etc/OpenCL/vendors && \
echo "libnvidia-opencl.so.1" > /etc/OpenCL/vendors/nvidia.icd
ENV NVIDIA_VISIBLE_DEVICES all
ENV NVIDIA_DRIVER_CAPABILITIES compute,utility
Dockerfile erstellen
Jetzt, da Sie das erforderliche Dockerfile haben, um loszulegen, lassen Sie es uns erstellen. Ich nenne das Bild als nvidia-opencl
:
docker build -t nvidia-opencl .
Starten Sie den OpenCL-Container
Basierend auf dem neuen Image, das Sie gerade erstellt haben, ist es an der Zeit, den neuen OpenCL-Container zu starten!
Erlauben Sie zunächst Ihrem Linux-Benutzernamen auf dem lokalen Rechner, sich mit dem folgenden Befehl mit der X-Windows-Anzeige zu verbinden:
xhost +local:username
Mit dem folgenden Befehl können Sie nun direkt die Shell des lokalen Containers basierend auf dem gerade erstellten neuen Image aufrufen:
docker run --rm -it --gpus all -v /tmp/.X11-unix:/tmp/.X11-unix -e DISPLAY=$DISPLAY nvidia-opencl
Überprüfen Sie Ihre OpenCL-Konfiguration auf Docker
Jetzt, da Sie sich in der Container-Shell befinden, können Sie clinfo
ausführen Befehl, um Ihre OpenCL-Konfiguration zu überprüfen, genau wie Sie es auf dem Bare-Metal-Hostsystem getan haben:
[email protected]:/# clinfo
Number of platforms 1
Platform Name NVIDIA CUDA
Platform Vendor NVIDIA Corporation
Platform Version OpenCL 1.2 CUDA 9.1.84
Platform Profile FULL_PROFILE
Platform Extensions cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics cl_khr_local_int32_base_atomics cl_khr_local_int32_extended_atomics cl_khr_fp64 cl_khr_byte_addressable_store cl_khr_icd cl_khr_gl_sharing cl_nv_compiler_options cl_nv_device_attribute_query cl_nv_pragma_unroll cl_nv_copy_opts cl_nv_create_buffer
Platform Extensions function suffix NV
Platform Name NVIDIA CUDA
Number of devices 1
Device Name GeForce GTX 1050 Ti
Device Vendor NVIDIA Corporation
Device Vendor ID 0x10de
Device Version OpenCL 1.2 CUDA
Driver Version 390.143
Device OpenCL C Version OpenCL C 1.2
Device Type GPU
Device Topology (NV) PCI-E, 01:00.0
Device Profile FULL_PROFILE
Device Available Yes
Compiler Available Yes
Linker Available Yes
Max compute units 6
Max clock frequency 1620MHz
Compute Capability (NV) 6.1
Device Partition (core)
Max number of sub-devices 1
Supported partition types None
Supported affinity domains (n/a)
Max work item dimensions 3
Max work item sizes 1024x1024x64
Max work group size 1024
Preferred work group size multiple 32
Warp size (NV) 32
Preferred / native vector sizes
char 1 / 1
short 1 / 1
int 1 / 1
long 1 / 1
half 0 / 0 (n/a)
float 1 / 1
double 1 / 1 (cl_khr_fp64)
Half-precision Floating-point support (n/a)
Single-precision Floating-point support (core)
Denormals Yes
Infinity and NANs Yes
Round to nearest Yes
Round to zero Yes
Round to infinity Yes
IEEE754-2008 fused multiply-add Yes
Support is emulated in software No
Correctly-rounded divide and sqrt operations Yes
Double-precision Floating-point support (cl_khr_fp64)
Denormals Yes
Infinity and NANs Yes
Round to nearest Yes
Round to zero Yes
Round to infinity Yes
IEEE754-2008 fused multiply-add Yes
Support is emulated in software No
Address bits 64, Little-Endian
Global memory size 4236312576 (3.945GiB)
Error Correction support No
Max memory allocation 1059078144 (1010MiB)
Unified memory for Host and Device No
Integrated memory (NV) No
Minimum alignment for any data type 128 bytes
Alignment of base address 4096 bits (512 bytes)
Global Memory cache type Read/Write
Global Memory cache size 98304 (96KiB)
Global Memory cache line size 128 bytes
Image support Yes
Max number of samplers per kernel 32
Max size for 1D images from buffer 134217728 pixels
Max 1D or 2D image array size 2048 images
Max 2D image size 16384x32768 pixels
Max 3D image size 16384x16384x16384 pixels
Max number of read image args 256
Max number of write image args 16
Local memory type Local
Local memory size 49152 (48KiB)
Registers per block (NV) 65536
Max number of constant args 9
Max constant buffer size 65536 (64KiB)
Max size of kernel argument 4352 (4.25KiB)
Queue properties
Out-of-order execution Yes
Profiling Yes
Prefer user sync for interop No
Profiling timer resolution 1000ns
Execution capabilities
Run OpenCL kernels Yes
Run native kernels No
Kernel execution timeout (NV) Yes
Concurrent copy and kernel execution (NV) Yes
Number of async copy engines 2
printf() buffer size 1048576 (1024KiB)
Built-in kernels (n/a)
Device Extensions cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics cl_khr_local_int32_base_atomics cl_khr_local_int32_extended_atomics cl_khr_fp64 cl_khr_byte_addressable_store cl_khr_icd cl_khr_gl_sharing cl_nv_compiler_options cl_nv_device_attribute_query cl_nv_pragma_unroll cl_nv_copy_opts cl_nv_create_buffer
NULL platform behavior
clGetPlatformInfo(NULL, CL_PLATFORM_NAME, ...) NVIDIA CUDA
clGetDeviceIDs(NULL, CL_DEVICE_TYPE_ALL, ...) Success [NV]
clCreateContext(NULL, ...) [default] Success [NV]
clCreateContextFromType(NULL, CL_DEVICE_TYPE_DEFAULT) No platform
clCreateContextFromType(NULL, CL_DEVICE_TYPE_CPU) No devices found in platform
clCreateContextFromType(NULL, CL_DEVICE_TYPE_GPU) No platform
clCreateContextFromType(NULL, CL_DEVICE_TYPE_ACCELERATOR) No devices found in platform
clCreateContextFromType(NULL, CL_DEVICE_TYPE_CUSTOM) Invalid device type for platform
clCreateContextFromType(NULL, CL_DEVICE_TYPE_ALL) No platform
ICD loader properties
ICD loader Name OpenCL ICD Loader
ICD loader Vendor OCL Icd free software
ICD loader Version 2.2.11
ICD loader Profile OpenCL 2.1
[email protected]:/#
Was bedeutet das? Das bedeutet, dass Sie jetzt jede OpenCL-Anwendung aus diesem Container heraus ausführen können! Sie müssten nur das Dockerfile neu modifizieren und das wäre es.
Sie können auch mit Python-Anwendungen arbeiten, die ein OpenCL-Backend erfordern. Überprüfen Sie meine frühere Berichterstattung, die als praktischer Begleiter zu diesem Artikel dienen kann. Vielleicht möchten Sie es ausprobieren und mit den Dockerfiles spielen.
Einrichten von OpenCL für AMD-GPUs
Ich zeige Ihnen zunächst, wie Sie sicherstellen, dass OpenCL auf Ihrem Haupt-Ubuntu-Desktop/Server funktioniert. Sobald dies erledigt ist, zeige ich Ihnen, wie Sie Docker-Container für den gleichen Zweck mit der AMD-GPU ausführen.
OpenCL auf dem Hostsystem ausführen
Auf einem neuen Ubuntu-System müssen Sie zuerst die „AMDGPU-Treiber“ von der AMD-Supportseite herunterladen. Für eine zukunftssichere Konfiguration müssen Sie OpenCL sowohl für ältere als auch für neuere AMD-GPUs nur installieren, nachdem Sie das Installationsarchiv (tar.xz) erhalten haben.
Installieren Sie schließlich clinfo
Programm, um sicherzustellen, dass OpenCL richtig installiert ist, und zeigt Ihnen die OpenCL-Spezifikationen Ihrer AMD-GPU im Detail. Aber der gesamte Prozess kann etwas kniffliger sein als erwartet. Mal sehen wie.
Laden Sie die AMDGPU-Treiber mit Curl herunter
Navigieren Sie durch die AMD-Supportseite und laden Sie den entsprechenden Treiber mit Curl herunter. Stellen Sie sicher, dass Sie Curl installiert haben.
sudo apt install curl
curl -e https://drivers.amd.com/drivers/linux -O https://drivers.amd.com/drivers/linux/amdgpu-pro-21.10-1247438-ubuntu-20.04.tar.xz
Installation, Anomalien und ihre Workarounds
Extrahieren Sie das Archiv:
tar -Jxvf amdgpu-pro-21.10-1247438-ubuntu-20.04.tar.xz
Wechseln Sie in das neue Verzeichnis:
cd amdgpu-pro-21.10-1247438-ubuntu-20.04
Jetzt werde ich OpenCL sowohl für ältere als auch für neuere GPUs installieren:
./amdgpu-install --opencl=legacy,rocr --headless --no-dkms
Für einen vollständigen Überblick über die Verwendung können Sie den Befehl ./amdgpu-install -h
verwenden um zu erfahren, wie das Skript grundlegend funktioniert. Es ähnelt einem Mann-Eintrag für den Befehl. Der --headless
Option gibt nur OpenCL-Unterstützung und --no-dkms
an weist es an, amdgpu-dkms
NICHT zu installieren und die amdgpu-dkms-firmware
Pakete in den Kernel. Das brauchst du nicht.
Seit geraumer Zeit wurde festgestellt, dass, obwohl Sie den --no-dkms
angeben Option, macht sich das Skript nicht die Mühe und fährt mit der Installation dieser unnötigen Pakete fort. Weitere hinzufügen, wenn ich amdgpu-dkms
zulasse um die Kernel-Konfiguration zu installieren und zu modifizieren, würde sich das System danach weigern, neu zu starten oder herunterzufahren! Dies geschah, nachdem ich ein Kernel-Update von Ubuntu-Repositories erhalten hatte.
In einem solchen Fall habe ich Folgendes getan:
Ich habe die folgenden Pakete manuell mit dpkg -i package-name.deb
installiert , vorhanden im extrahierten Verzeichnis:
amdgpu-pin_21.10-1247438_all.deb
amdgpu-core_21.10-1247438_all.deb
amdgpu-pro-core_21.10-1247438_all.deb
libdrm-amdgpu-common_1.0.0-1247438_all.deb
libdrm2-amdgpu_2.4.100-1247438_amd64.deb
libdrm-amdgpu-amdgpu1_2.4.100-1247438_amd64.deb
hsakmt-roct-amdgpu_1.0.9-1247438_amd64.deb
hsa-runtime-rocr-amdgpu_1.3.0-1247438_amd64.deb
comgr-amdgpu-pro_2.0.0-1247438_amd64.deb
hip-rocr-amdgpu-pro_21.10-1247438_amd64.deb
ocl-icd-libopencl1-amdgpu-pro_21.10-1247438_amd64.deb
clinfo-amdgpu-pro_21.10-1247438_amd64.deb
opencl-rocr-amdgpu-pro_21.10-1247438_amd64.deb
libllvm11.0-amdgpu_11.0-1247438_amd64.deb
Dadurch wurde sichergestellt, dass amdgpu-dkms
und amdgpu-dkms-firmware
vermieden werden könnten und den Kernel unberührt lassen. Beachten Sie auch, dass ich den älteren 21.10-Treiber heruntergeladen habe, obwohl die neuere und neueste 21.30-Version verfügbar ist. Der Grund dafür ist, dass letzteres sich weigert, meine Radeon VII-GPU zu erkennen, indem es einen "HSA-Fehler" ausgibt, wenn ich clinfo
ausführe später:
HSA Error: Incompatible kernel and userspace, Vega 20 [Radeon VII] disabled. Upgrade amdgpu.
Nachdem ich mich um diese Anomalien gekümmert hatte, konnte ich clinfo
abrufen um meine GPU korrekt zu melden.
Installieren Sie das clinfo-Paket
Installieren Sie clinfo
Paket, wie Sie es zuvor für NVIDIA-GPUs getan haben:
sudo apt install clinfo
Überprüfen Sie Ihre OpenCL-Konfiguration
[email protected]:~$ clinfo
Number of platforms 1
Platform Name AMD Accelerated Parallel Processing
Platform Vendor Advanced Micro Devices, Inc.
Platform Version OpenCL 2.0 AMD-APP (3246.0)
Platform Profile FULL_PROFILE
Platform Extensions cl_khr_icd cl_amd_event_callback
Platform Extensions function suffix AMD
Platform Name AMD Accelerated Parallel Processing
Number of devices 1
Device Name gfx906:sramecc-:xnack-
Device Vendor Advanced Micro Devices, Inc.
Device Vendor ID 0x1002
Device Version OpenCL 2.0
Driver Version 3246.0 (HSA1.1,LC)
Device OpenCL C Version OpenCL C 2.0
Device Type GPU
Device Board Name (AMD) Vega 20 [Radeon VII]
Device Topology (AMD) PCI-E, 0a:00.0
Device Profile FULL_PROFILE
Device Available Yes
Compiler Available Yes
Linker Available Yes
Max compute units 60
SIMD per compute unit (AMD) 4
SIMD width (AMD) 16
SIMD instruction width (AMD) 1
Max clock frequency 1801MHz
Graphics IP (AMD) 9.0
Device Partition (core)
Max number of sub-devices 60
Supported partition types None
Supported affinity domains (n/a)
Max work item dimensions 3
Max work item sizes 1024x1024x1024
Max work group size 256
Preferred work group size (AMD) 256
Max work group size (AMD) 1024
Preferred work group size multiple 64
Wavefront width (AMD) 64
Preferred / native vector sizes
char 4 / 4
short 2 / 2
int 1 / 1
long 1 / 1
half 1 / 1 (cl_khr_fp16)
float 1 / 1
double 1 / 1 (cl_khr_fp64)
Half-precision Floating-point support (cl_khr_fp16)
Denormals No
Infinity and NANs No
Round to nearest No
Round to zero No
Round to infinity No
IEEE754-2008 fused multiply-add No
Support is emulated in software No
Single-precision Floating-point support (core)
Denormals Yes
Infinity and NANs Yes
Round to nearest Yes
Round to zero Yes
Round to infinity Yes
IEEE754-2008 fused multiply-add Yes
Support is emulated in software No
Correctly-rounded divide and sqrt operations Yes
Double-precision Floating-point support (cl_khr_fp64)
Denormals Yes
Infinity and NANs Yes
Round to nearest Yes
Round to zero Yes
Round to infinity Yes
IEEE754-2008 fused multiply-add Yes
Support is emulated in software No
Address bits 64, Little-Endian
Global memory size 17163091968 (15.98GiB)
Global free memory (AMD) 16760832 (15.98GiB)
Global memory channels (AMD) 128
Global memory banks per channel (AMD) 4
Global memory bank width (AMD) 256 bytes
Error Correction support No
Max memory allocation 14588628168 (13.59GiB)
Unified memory for Host and Device No
Shared Virtual Memory (SVM) capabilities (core)
Coarse-grained buffer sharing Yes
Fine-grained buffer sharing Yes
Fine-grained system sharing No
Atomics No
Minimum alignment for any data type 128 bytes
Alignment of base address 1024 bits (128 bytes)
Preferred alignment for atomics
SVM 0 bytes
Global 0 bytes
Local 0 bytes
Max size for global variable 14588628168 (13.59GiB)
Preferred total size of global vars 17163091968 (15.98GiB)
Global Memory cache type Read/Write
Global Memory cache size 16384 (16KiB)
Global Memory cache line size 64 bytes
Image support Yes
Max number of samplers per kernel 26287
Max size for 1D images from buffer 134217728 pixels
Max 1D or 2D image array size 8192 images
Base address alignment for 2D image buffers 256 bytes
Pitch alignment for 2D image buffers 256 pixels
Max 2D image size 16384x16384 pixels
Max 3D image size 16384x16384x8192 pixels
Max number of read image args 128
Max number of write image args 8
Max number of read/write image args 64
Max number of pipe args 16
Max active pipe reservations 16
Max pipe packet size 1703726280 (1.587GiB)
Local memory type Local
Local memory size 65536 (64KiB)
Local memory syze per CU (AMD) 65536 (64KiB)
Local memory banks (AMD) 32
Max number of constant args 8
Max constant buffer size 14588628168 (13.59GiB)
Preferred constant buffer size (AMD) 16384 (16KiB)
Max size of kernel argument 1024
Queue properties (on host)
Out-of-order execution No
Profiling Yes
Queue properties (on device)
Out-of-order execution Yes
Profiling Yes
Preferred size 262144 (256KiB)
Max size 8388608 (8MiB)
Max queues on device 1
Max events on device 1024
Prefer user sync for interop Yes
Number of P2P devices (AMD) 0
P2P devices (AMD) <printDeviceInfo:147: get number of CL_DEVICE_P2P_DEVICES_AMD : error -30>
Profiling timer resolution 1ns
Profiling timer offset since Epoch (AMD) 0ns (Thu Jan 1 05:30:00 1970)
Execution capabilities
Run OpenCL kernels Yes
Run native kernels No
Thread trace supported (AMD) No
Number of async queues (AMD) 8
Max real-time compute queues (AMD) 8
Max real-time compute units (AMD) 60
printf() buffer size 4194304 (4MiB)
Built-in kernels (n/a)
Device Extensions cl_khr_fp64 cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics cl_khr_local_int32_base_atomics cl_khr_local_int32_extended_atomics cl_khr_int64_base_atomics cl_khr_int64_extended_atomics cl_khr_3d_image_writes cl_khr_byte_addressable_store cl_khr_fp16 cl_khr_gl_sharing cl_amd_device_attribute_query cl_amd_media_ops cl_amd_media_ops2 cl_khr_image2d_from_buffer cl_khr_subgroups cl_khr_depth_images cl_amd_copy_buffer_p2p cl_amd_assembly_program
NULL platform behavior
clGetPlatformInfo(NULL, CL_PLATFORM_NAME, ...) No platform
clGetDeviceIDs(NULL, CL_DEVICE_TYPE_ALL, ...) No platform
clCreateContext(NULL, ...) [default] No platform
clCreateContext(NULL, ...) [other] Success [AMD]
clCreateContextFromType(NULL, CL_DEVICE_TYPE_DEFAULT) Success (1)
Platform Name AMD Accelerated Parallel Processing
Device Name gfx906:sramecc-:xnack-
clCreateContextFromType(NULL, CL_DEVICE_TYPE_CPU) No devices found in platform
clCreateContextFromType(NULL, CL_DEVICE_TYPE_GPU) Success (1)
Platform Name AMD Accelerated Parallel Processing
Device Name gfx906:sramecc-:xnack-
clCreateContextFromType(NULL, CL_DEVICE_TYPE_ACCELERATOR) No devices found in platform
clCreateContextFromType(NULL, CL_DEVICE_TYPE_CUSTOM) No devices found in platform
clCreateContextFromType(NULL, CL_DEVICE_TYPE_ALL) Success (1)
Platform Name AMD Accelerated Parallel Processing
Device Name gfx906:sramecc-:xnack-
So, now you can run OpenCL applications with your AMD GPU on your host system!
OpenCL on Docker for AMD GPUs
How about doing the same through Docker containers? Let's see how much it contrasts with NVIDIA GPUs.
Creating the Dockerfile
Create a new directory for your AMD GPU OpenCL project and move into it:
mkdir amd-opencl
cd amd-opencl
Use your favorite text editor (Vim/Nano or any other) to create the following Dockerfile and save it:
FROM ubuntu:20.04
ARG DEBIAN_FRONTEND=noninteractive
RUN apt-get update && apt-get -y upgrade \
&& apt-get install -y \
initramfs-tools \
apt-utils \
unzip \
tar \
curl \
xz-utils \
ocl-icd-libopencl1 \
opencl-headers \
clinfo \
;
ARG AMD_DRIVER=amdgpu-pro-21.10-1247438-ubuntu-20.04.tar.xz
ARG AMD_DRIVER_URL=https://drivers.amd.com/drivers/linux
RUN mkdir -p /tmp/opencl-driver-amd
WORKDIR /tmp/opencl-driver-amd
RUN curl --referer $AMD_DRIVER_URL -O $AMD_DRIVER_URL/$AMD_DRIVER; \
tar -Jxvf $AMD_DRIVER; \
cd amdgpu-pro-*; \
./amdgpu-install --opencl=legacy,rocr --headless --no-dkms -y; \
rm -rf /tmp/opencl-driver-amd;
RUN mkdir -p /etc/OpenCL/vendors && \
echo "libamdocl64.so" > /etc/OpenCL/vendors/amdocl64.icd
RUN ln -s /usr/lib/x86_64-linux-gnu/libOpenCL.so.1 /usr/lib/libOpenCL.so
WORKDIR /
I had to add the initramfs-tools
package since the amdgpu-dkms
and amdgpu-dkms-firmware
would still be installed. I kept it this way since in this case, the reboot and shutdown issues I mentioned earlier are irrelevant for containers.
Alternatively, you could still use the dpkg -i
method in the Dockerfile.
Building the Dockerfile
So now that you have the necessary Dockerfile to get started, let's build it. I'm naming the image as amd-opencl
:
docker build -t amd-opencl .
Add your username to the video &render groups
For the AMD GPU Docker container to work flawlessly, it is better you also add your username to the video and render groups:
sudo usermod -a -G video $LOGNAME
sudo usermod -a -G render $LOGNAME
Launch the OpenCL Container
Based on the new image that you just built, it's time to launch the new OpenCL container!
Permit your Linux username on the local machine to connect to the X windows display with the following command:
xhost +local:username
With the following command, you can now directly enter the local container's shell based on the new image just created:
docker run --rm -it --device=/dev/kfd --device=/dev/dri --group-add video --group-add render -v /tmp/.X11-unix:/tmp/.X11-unix -e DISPLAY=$DISPLAY amd-opencl
Verify your OpenCL configuration on Docker
Now that you are inside the container shell, you can run the clinfo
command to verify your OpenCL configuration just like you did on the bare-metal host system:
[email protected]:/# clinfo
Platform Name AMD Accelerated Parallel Processing
Number of devices 1
Device Name gfx906:sramecc-:xnack-
Device Vendor Advanced Micro Devices, Inc.
Device Vendor ID 0x1002
Device Version OpenCL 2.0
Driver Version 3246.0 (HSA1.1,LC)
Device OpenCL C Version OpenCL C 2.0
Device Type GPU
Device Board Name (AMD) Device 66af
Device Topology (AMD) PCI-E, 0a:00.0
Device Profile FULL_PROFILE
Device Available Yes
Compiler Available Yes
Linker Available Yes
Max compute units 60
SIMD per compute unit (AMD) 4
SIMD width (AMD) 16
SIMD instruction width (AMD) 1
Max clock frequency 1801MHz
Graphics IP (AMD) 9.0
Device Partition (core)
Max number of sub-devices 60
Supported partition types None
Supported affinity domains (n/a)
Max work item dimensions 3
Max work item sizes 1024x1024x1024
Max work group size 256
Preferred work group size (AMD) 256
Max work group size (AMD) 1024
Preferred work group size multiple 64
Wavefront width (AMD) 64
Preferred / native vector sizes
char 4 / 4
short 2 / 2
int 1 / 1
long 1 / 1
half 1 / 1 (cl_khr_fp16)
float 1 / 1
double 1 / 1 (cl_khr_fp64)
Half-precision Floating-point support (cl_khr_fp16)
Denormals No
Infinity and NANs No
Round to nearest No
Round to zero No
Round to infinity No
IEEE754-2008 fused multiply-add No
Support is emulated in software No
Single-precision Floating-point support (core)
Denormals Yes
Infinity and NANs Yes
Round to nearest Yes
Round to zero Yes
Round to infinity Yes
IEEE754-2008 fused multiply-add Yes
Support is emulated in software No
Correctly-rounded divide and sqrt operations Yes
Double-precision Floating-point support (cl_khr_fp64)
Denormals Yes
Infinity and NANs Yes
Round to nearest Yes
Round to zero Yes
Round to infinity Yes
IEEE754-2008 fused multiply-add Yes
Support is emulated in software No
Address bits 64, Little-Endian
Global memory size 17163091968 (15.98GiB)
Global free memory (AMD) 16760832 (15.98GiB)
Global memory channels (AMD) 128
Global memory banks per channel (AMD) 4
Global memory bank width (AMD) 256 bytes
Error Correction support No
Max memory allocation 14588628168 (13.59GiB)
Unified memory for Host and Device No
Shared Virtual Memory (SVM) capabilities (core)
Coarse-grained buffer sharing Yes
Fine-grained buffer sharing Yes
Fine-grained system sharing No
Atomics No
Minimum alignment for any data type 128 bytes
Alignment of base address 1024 bits (128 bytes)
Preferred alignment for atomics
SVM 0 bytes
Global 0 bytes
Local 0 bytes
Max size for global variable 14588628168 (13.59GiB)
Preferred total size of global vars 17163091968 (15.98GiB)
Global Memory cache type Read/Write
Global Memory cache size 16384 (16KiB)
Global Memory cache line size 64 bytes
Image support Yes
Max number of samplers per kernel 26287
Max size for 1D images from buffer 134217728 pixels
Max 1D or 2D image array size 8192 images
Base address alignment for 2D image buffers 256 bytes
Pitch alignment for 2D image buffers 256 pixels
Max 2D image size 16384x16384 pixels
Max 3D image size 16384x16384x8192 pixels
Max number of read image args 128
Max number of write image args 8
Max number of read/write image args 64
Max number of pipe args 16
Max active pipe reservations 16
Max pipe packet size 1703726280 (1.587GiB)
Local memory type Local
Local memory size 65536 (64KiB)
Local memory syze per CU (AMD) 65536 (64KiB)
Local memory banks (AMD) 32
Max number of constant args 8
Max constant buffer size 14588628168 (13.59GiB)
Preferred constant buffer size (AMD) 16384 (16KiB)
Max size of kernel argument 1024
Queue properties (on host)
Out-of-order execution No
Profiling Yes
Queue properties (on device)
Out-of-order execution Yes
Profiling Yes
Preferred size 262144 (256KiB)
Max size 8388608 (8MiB)
Max queues on device 1
Max events on device 1024
Prefer user sync for interop Yes
Number of P2P devices (AMD) 0
P2P devices (AMD) <printDeviceInfo:147: get number of CL_DEVICE_P2P_DEVICES_AMD : error -30>
Profiling timer resolution 1ns
Profiling timer offset since Epoch (AMD) 0ns (Thu Jan 1 00:00:00 1970)
Execution capabilities
Run OpenCL kernels Yes
Run native kernels No
Thread trace supported (AMD) No
Number of async queues (AMD) 8
Max real-time compute queues (AMD) 8
Max real-time compute units (AMD) 60
printf() buffer size 4194304 (4MiB)
Built-in kernels (n/a)
Device Extensions cl_khr_fp64 cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics cl_khr_local_int32_base_atomics cl_khr_local_int32_extended_atomics cl_khr_int64_base_atomics cl_khr_int64_extended_atomics cl_khr_3d_image_writes cl_khr_byte_addressable_store cl_khr_fp16 cl_khr_gl_sharing cl_amd_device_attribute_query cl_amd_media_ops cl_amd_media_ops2 cl_khr_image2d_from_buffer cl_khr_subgroups cl_khr_depth_images cl_amd_copy_buffer_p2p cl_amd_assembly_program
NULL platform behavior
clGetPlatformInfo(NULL, CL_PLATFORM_NAME, ...) No platform
clGetDeviceIDs(NULL, CL_DEVICE_TYPE_ALL, ...) No platform
clCreateContext(NULL, ...) [default] No platform
clCreateContext(NULL, ...) [other] Success [AMD]
clCreateContextFromType(NULL, CL_DEVICE_TYPE_DEFAULT) Success (1)
Platform Name AMD Accelerated Parallel Processing
Device Name gfx906:sramecc-:xnack-
clCreateContextFromType(NULL, CL_DEVICE_TYPE_CPU) No devices found in platform
clCreateContextFromType(NULL, CL_DEVICE_TYPE_GPU) Success (1)
Platform Name AMD Accelerated Parallel Processing
Device Name gfx906:sramecc-:xnack-
clCreateContextFromType(NULL, CL_DEVICE_TYPE_ACCELERATOR) No devices found in platform
clCreateContextFromType(NULL, CL_DEVICE_TYPE_CUSTOM) No devices found in platform
clCreateContextFromType(NULL, CL_DEVICE_TYPE_ALL) Success (1)
Platform Name AMD Accelerated Parallel Processing
Device Name gfx906:sramecc-:xnack-
[email protected]:/#
And that's how you can run OpenCL applications inside an AMD GPU container!
Note that the xhost
command being used for both the NVIDIA and AMD GPU containers is necessary every time you want to run them from a new terminal.
Bonus Tips
If you happen to own multiple GPUs on a single system and want to be specific about running the containers, you can do that as well. Read on.
NVIDIA GPUs
Based on how clinfo
reports NVIDIA GPU information, they are classified on Docker as 0
, 1
, 2
und so weiter. So, say you have three NVIDIA GPUs and want the container to see only GPU 0(the first one), the corresponding command would have to be revised as:
docker run --rm -it --gpus 0 -v /tmp/.X11-unix:/tmp/.X11-unix -e DISPLAY=$DISPLAY nvidia-opencl
AMD GPUs
Similarly, based on how clinfo
reports AMD GPU information, they are classified on Docker as /dev/dri/card0
, /dev/dri/card1
, /dev/dri/card2
und so weiter. So, say you have three AMD GPUs and want the container to see only the first, use the following command instead:
docker run --rm -it --device=/dev/kfd --device=/dev/dri/card0 --device=/dev/dri/renderD128 --group-add video --group-add render -v /tmp/.X11-unix:/tmp/.X11-unix -e DISPLAY=$DISPLAY amd-opencl
As per the above command, note that renderD128
corresponds to card0
, both of which relate to the first AMD GPU. On the same lines, renderD129
would correspond to card1
for the second AMD GPU and so on. The "renderD" value is incremental and therefore for the third GPU, it would be renderD130
corresponding to card2
. You can know these metrics in detail by running the ls -l /dev/dri/by-path
Befehl.
Personal notes
Since the last 7 years, I've been actively involved with research that focuses on harnessing the computational power of Graphics Processing Units (GPUs) to understand biological phenomena.
For more than a year now, I've been working on Dockerizing CellModeller, which is my primary research software that I've been working with, to understand multicellularity and at the same time also contributing on its development as a software.
Even though the AMD GPU containerization process can be a bit tedious and tricky, I still liked the way it works without the need of an additional runtime package necessary for NVIDIA GPU containers.
For the entire endeavour, the following references were extremely helpful:
Congleton, N., 2020. Install OpenCL For The AMDGPU Open Source Drivers On Debian and Ubuntu . [online] LinuxConfig.org. Available at: https://linuxconfig.org/install-opencl-for-the-amdgpu-open-source-drivers-on-debian-and-ubuntu [Accessed June 23 2021].
My heartfelt thanks to all three authors!
There are so many applications out there on the accelerated computing domain that need OpenCL running on the backend for both GPU vendors. One good example is [email protected] and its specific GPU requirements.
Do let me know your thoughts about this intriguing adventure with OpenCL, GPUs, Linux and finally, Docker! If you have any feedback or suggestions, please let me know in the comment section below.